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ABSTRACT

There is a major problem with algorithm portability when the user switches from one parallel architecture to
another. Since algorithms are usually architecture-dependent, the algorithm running on the old architecture
may not run on the new one. Standard techniques, like parallelizing compilers or emulation, have efficacies
far below those of algorithms specifically developed for the individual architecture.

This paper proposes a two-level approach to programming parallel computers that is applicable as long
as the underlying interconnection architecture can be modeled as a product network (e.g. grid, torus, hyper-
cube, etc.). Our approach assumes that there are some low-level routines optimized for the “factor” networks
comprising the product network. The set of low-level routines can be implemented as library routines. The
high-level programming is then achieved, oblivious to the topology of the factor networks, by decomposing
computations in a manner that only uses the set of low-level routines. We show how to decompose sev-
eral problems, including matrix multiplication, pointer jumping, FFT, computing the transitive closure of
a graph, as well as several other graph-theory problems. The analyses of running time complexities show
that, for several product networks, these algorithms are either optimal or they match the complexity of the
fastest-known algorithms specifically developed for these networks. As the class of product networks contains
existing architectures such as hypercubes and grids, the results of this paper have significant practical value.

Keywords: parallel architectures, parallel programming, FFT, graph algorithms, matrix multipli-
cation, routing, pointer jumping.

INTRODUCTION

Users of massively parallel computers face a major problem when they change their hardware
platforms: an algorithm developed for the older architecture will not run on the new architecture.
To remedy this problem, specialized languages equipped with parallelization routines (such as High
Performance Fortran) have been developed, but the efficiency of the parallel code generated by
these compilers is far below the efficiency of algorithms developed specifically for each individual
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Figure 1: Construction of product networks.

architecture. Other standard techniques, like emulations via embeddings, also incur in significant
slowdown.

This paper proposes a more direct approach to programming parallel computers that is appli-
cable as long as the underlying interconnection architecture can be modeled as a product network
(e.g. grid, torus, hypercube, etc.). Rather than using a parallelizing compiler to map the sequential
code, we advocate using high-level algorithms that are written in a manner oblivious to the under-
lying network topology. Two basic assumptions behind our approach are that (a) there exist some
low-level routines optimized for the “factor” network comprising the product network, and (b) there
exist an abstract level specification of work to be done to solve a problem, given that certain low
level functions have been implemented as in the first assumption. The lower level routines perform
a set of basic functions and they can be implemented as library routines by the manufacturer of
the hardware, or by compiler designers. Showing the validity of the second assumption for several
important problems is the main contribution of this paper. In particular, we show how to decom-
pose several computations in a manner that only uses a set of generic routines that we assume to
be available, and optimized for the “factor” network.

In the literature, generic algorithms running on product networks have been presented for
several problems: sorting [5], broadcasting and point-to-point communication [12], permutation
routing [1], and fault-tolerant routing. [4, 8]. This paper enhances this list by introducing new
algorithms for matrix multiplication, computing the transitive closure of a graph, and Fast Fourier
Transform. We compute the running time complexity of these algorithms for several instances of
product networks and show that the running time is either optimal, or it matches the complexity
of the fastest-known algorithms specifically developed for these systems.

DEFINITIONS AND NOTATION

We first define the cartesian product of two graphs. Given a graph G, we use V(G) to denote its
vertex set and E(G) to denote its edge set.

Definition 1 The product of two graphs G and H is the graph GH, whose vertezx set is V(G) X
V(H), and whose edge set is defined as follows: Assume z,z’' € V(GQ) and y,y' € V(H), then
((z,y), (z',y") is an edge in GH if and only if either x = z' and (y,y') € E(H), or y =y and
(z,2') € E(G).

Counstruction of a two-dimensional product network G H according to this definition is illustrated
in Figure 1. We first draw H with all its nodes aligned horizontally. Suppose G has ng nodes, then
we make ng copies of the H graph drawn in such a way that nodes with identical labels fall in the
same column. Each column is then connected according to the interconnection pattern of G. The



resulting product network can be seen as a two-dimensioal grid in which the row connections have
been substituted by the connections of H and the column connections have been substituted by
those of G.

We can similarly construct a three dimensional product network GHI. In this case we would
first construct the two-dimensional product GH. Then, if I has n; nodes, we would make n;
copies of GH, and use these as the planes connected in the third dimension. The third dimension
connections are formed according to the interconnection pattern of I. Observe that the resulting
3-dimensional network can be seen as a 2-dimensional product network in which one of the factor
networks is itself a product network. We can similarly construct product networks with several
dimensions.

Given the product network G H, by construction each row is a subgraph isomorphic to H and
each column is a subgraph isomorphic to G. Furthermore, each of the H subgraphs in a row can
be uniquely identified with a label z € V(G), since all its nodes have z as the left component in
the label. Thus, we shall use zH to denote the row subgraph H of GH identified with label z. For
example, 2H is the H subgraph in the top row of Figure 1. Similarly, each column can be identified
with a label y € V(H), and Gy denotes the column subgraph G identified with label y. We use
zy to refer to a specific node in the two dimensional product graph, where = denotes the column
position of the node, and y denotes the row position.

In a three dimensional product network GHI the above notation can be naturally extended to
denote its corresponding subgraphs. For instance, GH z would denote a 2-dimensional subgraph of
GHI1, isomorphic to GH, and identified by a label z € V (I).

In several places in the paper we need to refer to array variables contained in the nodes of a
network G, one array element for each node. To do so, we shall use the notation a[z], where a is
a one dimensional array and z is the index variable, z € V(G). We will use Greek letters such as
a, 3 to indicate specific constants that these index variables take. For example, while a|z] refers
to an array, a|a] refers to a specific element in the array. We will similarly extend these notations
for two or more dimensions.

ROUTING, BROADCASTING, AND SUMMATION

We first illustrate the above notations by presenting some routing algorithms due to Youssef [12].
We will subsequently introduce a new algorithm for summation of values held in procesors (one for
each processor). These will form a collection of “building blocks” that other algorithms will use,
either directly or in a slightly modified form.

In a point-to-point routing problem a source node « sends a packet s to a target node (3 in
the factor network. Assume that such an algorithm exists for two factor networks G and H. Here
we are interested in using such primitive operations to construct a point-to-point routing algorithm
for the two-dimensional product GH. More formally:

Given:

Operation Route(G: Network; a: Source; 3: Destination; s: Data)
Let p[z] be an array stored in the nodes of G, one each.
Before: p[a] = s, where s is the value to be sent.

After: p[f] = pla] = s.

The point-to-point routing algorithm for GH is:



Algorithm Product-Route(GH: Network; af8: Source; o/ ': Destination; s: Data)
Route(GB, afB, o'B, s);
Route(o'H, /3, o', )

Recall that G refers to the G subgraph of GH in column 3 of the product network. The first
procedure call “Route(G3, af, o', s)” sends the message s from af to ¢/ in GB. The last line
of the algorithm sends the data s from o/3 to /(' in the H graph at row o'.

In a broadcasting operation a source node « sends a copy of the same packet p[a] to all the
nodes in the network.

Given:

Operation Broadcast(G: Network; a: Source; s: Data)
Let p[z] be an array of packets
Before: p[a] = s, where s is the value to be broadcast.
After: Vz € V(G), plz] = pla] = s.
The algorithm to broadcast in a product network is given as follows.

Algorithm Product-Broadcast(GH: Network; af: Source; s: Data)
Broadcast(Gg, af, s);
For each = € V(G) do in parallel: Broadcast(zH, 23, s)

At the end of the first “Broadcast” operation, every node in column ( has a copy of the message
which was originally in processor p[a]. The second “Broadcast” operation broadcasts these values
at each row in parallel. If the primitive routing algorithms for G and H take optimal time, then
the above algorithm also takes optimal time.

A summation algorithm obtains the sum of the values initially stored in the nodes of a network,
one for each node, and leaves the result in some specific node a. Formally:

Given:

Operation Sum(G: Network; a: Node; a[z]: Array)
Before: Vz € V(G), alz] = vy, where v, is the value to be added.
After: a[a] = Y vg; for all z € V(G).

This algorithm overwrites the sum on the old value a[a] in processor a. If overwriting is not
desired, a new variable can be introduced to contain the final value. The following algorithm shows
how to compute the sum in the product network, leaving the result in the node af.

Algorithm Product-Sum(GH: Network; af: Node; a[zy]: Array)
For each z € V(G) do in parallel: Sum(zH, =3, a[zy]);

Sum(GB, af, a[zf])

Here the first “For each” statement applies a “Sum” operation in each row. Due to the fact that zH
denotes the factor graph H in row z, the resulting row sum resides at processor 3, for all z € G.
The only remaining work is to sum the new values at processors of column 3. The last “Sum”
operation sums these values, storing the result in processor 8. If we use S(G) and S(H) to denote
the complexity of the summation algorithm on networks G and H respectively, this algorithm has
complexity S(GH) = S(G) + S(H).

Several problems have a structure similar to that of the summmation problem (obtaining the
product, the maximum, the minimum, etc.). Algorithms for these problems can be obtained with
straightforward modifications of the summation algorithm presented here.



ADVANCED ALGORITHMS

Pointer Jumping: Let u be a vector of n values, the pointer-jumping operation obtains a new
vector w, such that w(i] = u[u[i]], for ¢ = 0,...,n — 1. Below we present an algorithm for a more
general version of the pointer-jumping operation. We initially have two vectors u and v, of n values,
and we obtain the vector w such that wi] = u[v[i]], for i = 0,...,n — 1. The special case of u = v
gives the traditional pointer jumping operation.

Given: Above algorithms for point-to-point routing and broadcasting in factor networks.

In the algorithm below the “o” represents some “signal” sent from one node to another.
Algorithm Pointer-Jumping(GH: Network; zy: Node; uly], v[z], w[y], p[ry]: Array)
Do in parallel
For each z € V(@) do in parallel: Broadcast(zH, 0, u[z0];)
Each processor zy stores the received value in p[zy]
For each y € V(H) do in parallel: Route(Gy, Oy, v[z]y, o)
For each z € V(G), y € V(H) do in parallel:
If Received o then Route(Gy, =y, Oy, plzy]);
Each processor Oy in 0H stores the received value in w[y|

Assuming that the u[y| vector is initially held in GO subgraph of GH, the first “For each”
operation broadcasts the uly] vector using all the H subgraphs in the rows, independently. Assum-
ing that v[z] is initially held in the O0H subgraph of GH, the second “For each” operation sends
the “o” signals to v[z]th processor in each G graph in the columns. During the last “For each”
operation, processors receiving this “o” message send their values to processor 0 in their column.
These values are then stored as the w[y] vector at subgraph 0H. Let B(H) denote the time to
broadcast on H, and R(G) denote the time to route on G. Then, this algorithm has complexity

P(GH) = max(B(H), R(G)) + R(G) + 1.

Matrix Multiplication: Let A and B be the matrices to be multiplied. We present an algo-
rithm that computes the product matrix C' in a three dimensional network GHI. We assume that
A is a ng by ny matrix, while B is a ng by n; matrix. Then, C is a ng by n; matrix. If a;
are the elements of matrix A, and by ; are the elements of matrix B, then the element ¢; ; of C
is obtained as ¢;; = Y>_p", a;;bi ;. Here we assume V(G) = {1,...,ng}, V(H) = {1,...,ng}, and
V(I) ={1,...,nr}. Initially, the A and B matrices are stored in GHO0, and 0HI, respectively. The
resulting C' matrix will be obtained in GOI.

Given: Above algorithms for broadcasting and summation in factor networks.

Algorithm Matrix-Multiply(GHI: Network; zyz: Node; Alzyz|, B[zyz|, C[zyz]: Array)
Do in parallel
For each z € V(G),y € V(H) do in parallel:
Broadcast(zyl, zy0, A[zy0]);
For each y € V(H), z € V(I) do in parallel:
Broadcast(Gyz, 0yz, B[0yz]);
For each z € V(G),y € V(H),z € V(I) do in parallel:
Clryz] = Alzyz]Blzyz];



For each z € V(G), z € V(I) do in parallel:
Sum(zHz, 0z, Clzryz])

The algorithm works by multicasting the elements of the matrices A and B so that their product
can be computed in parallel in a single step. A final summation of the results of these computations
yield the elements of matrix C in GOI. Let B(G) be the time to broadcast on G, and define B(I)
similarly. Let S(H) be the time to obtain the sum on H. Then, the completity of the algorithm is
M(GHI) = max(B(G),B(I)) + S(H) + 1.

Transitive Closure: Given the N x N adjacency matrix A for a directed graph, its transitive
closure is A* = AN. We can use the above matrix multiplication algorithm to compute A* from
A in log N steps by the following algorithm, which assumes that the adjacency matrix is initially
stored in the GOI subgraph of GHI. The final result will again be obtained in the GOI subgraph.

Algorithm Transitive-Closure(G HI: Network; zyz: Node; A[zyz]: Array)
Repeat for log N iterations:
For each z € I do in parallel:
Product-Route (GHz, 20z, 0zz, A[z0z]);
For each z € G do in parallel:
Product-Route (zHI, 20z, z20, A[z0z]);
Matrix-Multiply (GHI, zyz, Alzyz], Alzyz]|, Alzyz])

It is also possible to compute other graph theory problems by using the primitive operations
provided in this paper. For example, the computation of minimum-weight spanning tree involves
point-to-point routing in the factor graph, broadcasting in the factor graph, pointer jumping in a
two-dimensional product, and finding the minimum value in a factor graph. While we omit the
algorithm due to space limitations, the reader is encouraged to construct such an algorithm on a
two-dimensional product network analogous to the basic idea in [7, pp. 325-338].

Fast Fourier Transform: The FFT is a “fast” method to compute the discrete Fourier transform
(DFT) of a vector. The DFT of an n-vector u is the n-vector v, defined as

n—1
v = Zujwk] i k=0,...,n—1
7=0

where w is a principal nth root of unity (i.e. w» =1 and w’/ # 0 for 0 < j < n). Since the FFT is
mostly used for signal processing, it is usually considered to be w = e=27/",

Let N = L x M and suppose that we have the N-vector stored in the L x M array in the
row-major order. The FFT computation of the N-vector can be decomposed as [10]

M—1 L1
Vg = Vs = Z whmryms Z ul,mwMSl ; where k = Lr + s.
m=0 1=0

Therefore we can compute the FFT of the N-vector by first computing the L-point FFT of each
column independently, followed by multiplying each term by the twiddle factor w™?® for its corre-
sponding m, s values, and then finally computing the FFT of each row independently with w’ as
kernel.
Given:



Operation FFT(G: Network; z: Node; r[z], s[z]: Array)
Before: Vz € V(QG), r[z] = uy. .

After: Vz € V(G), s[z] = ;-L;& ujw®.

Suppose that the elements of the input vector u are initially held in the nodes of GH in row-
major order, stored as the array r[zy].

Algorithm Product-FFT(GH: Network; zy: Node; r[zy], s[zy]|: Array)
For each y € V(H) do in parallel:
FFET(Gy, rlzyl, alzy]);
For each z € V(G),y € V(H) do in parallel:
blzy] = alzylw™;
For each z € V(@) do in parallel:
FFT(zH, b[zy], s[zy]);
Swap dimensions, so that s[zy] = s[yz]

This last line of the algorithm is necessary to leave the computed vector v in row-major order,
since the previous computation obtains it in column-major order. This process does not require
any computation, since it is enough to redefine the dimensions as < y and y < z to logically
have the elements at the right nodes. Let F(G) and F(H) be the time to compute the FFT on G
and H, respectively. Then, the complexity of this algorithm is F(GH) = F(G) + F(H) + 1.

APPLICATION TO SPECIFIC NETWORKS

In this section we obtain the asymptotic complexity of the presented algorithms on several multi-
dimensional “homogeneous” product networks. A product network is said to be homogeneous if all
its factor networks are isomorphic. We will use N to denote the size of the factor network and r to
denote the number of dimensions (number of factor networks) of the product network. The value
of r will be 2 or 3 depending on the algorithm.

Grid: The grid is the product of linear arrays. Observe that point-to-point routing, broadcasting,
computing sums, and computing the FFT have complexity O(N) on a N-node linear array. Hence,
we find that all the presented algorithms, except for the transitive closure, have complexity O(rN).
The transitive closure algorithm, has complexity O(rN log N).

Mesh-connected trees (MCT): This network is the homogeneous product of complete binary
trees [2]. On the N-node complete binary tree, point-to-point routing, broadcasting, and computing
sums take O(log N) steps. The FFT operation requires O(N) steps on the complete binary tree
since it is restricted by the bisection width of the complete binary tree. For the MCT network, all
the presented algorithms have complexity O(r log N), except the transitive closure algorithm which
has complexity O(rlog® N), and the FFT algorithm which has complexity O(rN).

Product of de Bruijn (PDB) and shuffle-exchange (PSE) networks: Products of de Bruijn
networks were proposed in [3, 11] and products of shuffle-exchange networks were proposed in
[3]. In both factor networks, point-to-point routing, broadcasting, computing sums, and comput-
ing the FFT have complexity O(log N) [7]. Then, all the algorithms presented have complexity
O(rlog N) on their r-dimensional product except the transitive closure algorithm which has com-
plexity O(rlog? N).

Hypercube (HC): The n-dimensional hypercube can be seen as the r-dimensional homogeneous
homogeneous product of the i-dimensional hypercube where n = ri. Letting i = logN, consider



| Network | P-p | Broad. | Sum | Pointer J. | Mat. mult. | Trans. Clo. | FFT |

Grid O(rN)* O(rN)* O(rN)* O(rN)* O(rN)* O(rNlog N) O(rN)*
MCT O(rlog N)* | O(rlog N)* | O(rlog N)* | O(rlog N)* | O(rlog N)* | O(rlog®N) O(rN)
PDB O(rlog N)* | O(rlog N)* | O(rlog N)* | O(rlog N)* | O(rlog N)* | O(rlog’? N) | O(rlog N)*
PSE O(rlog N)* | O(rlog N)* | O(rlog N)* | O(rlog N)* | O(rlog N)* | O(rlog? N) | O(rlog N)*
HC O(rlog N)* | O(rlog N)* | O(rlog N)* | O(rLogN)* | O(rlog N)* | O(rlog®> N) | O(rlog N)*

Table 1: Asymptotic running time complexities of the proposed algorithms on several networks.
The values marked with “*” are optimal. Note that r = 2 for all columns except for matrix
multiplication and transitive closure, where r = 3.

the running times of primitive low-level operations in this N-node factor network. On the N-node
hypercube, point-to-point routing, broadcasting, FFT, and computing sums take O(log N) steps.
Therefore, on the product all the presented algorithms, except for transitive closure, will take
O(rlog N) steps. Transitive closure requires O(r log? N) steps.

Table 1 summarizes these running times. The time complexities marked with are optimal
for the network considered, since for all of these cases the complexities obtained coincide with the
diameters of the corresponding networks. The only exceptions are the transitive closure algorithm,
and the FFT on the mesh-connected trees. As shown in [6], a faster algorithm can be obtained
for the transitive closure computation and other graph theory problems based on using the pointer
jumping algorithm. For FFT on MCT, no algorithm faster than ours is currently available.

Wk

CONCLUSIONS

In this paper we have proposed an approach to construct algorithms on product networks that are
applicable regardless of the underlying factor network. These algorithms run very efficiently on the
example networks explored. This implies that the generality of the approach does not necessarily
come at a cost in efficiency. There are still many interesting problems not considered in this paper
or in any of the previous papers in the literature. Investigation of new general algorithms for these
problems appears to be an interesting area of research.
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